3.1101 \(\int \frac{(d x)^{3/2}}{(a+b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=150 \[ \frac{2 (d x)^{5/2} \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{5}{4};\frac{3}{2},\frac{3}{2};\frac{9}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{5 a d \sqrt{a+b x^2+c x^4}} \]

[Out]

(2*(d*x)^(5/2)*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF
1[5/4, 3/2, 3/2, 9/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(5*a*d*Sqrt[a +
 b*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.128344, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {1141, 510} \[ \frac{2 (d x)^{5/2} \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{5}{4};\frac{3}{2},\frac{3}{2};\frac{9}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{5 a d \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^(3/2)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(2*(d*x)^(5/2)*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF
1[5/4, 3/2, 3/2, 9/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(5*a*d*Sqrt[a +
 b*x^2 + c*x^4])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{(d x)^{3/2}}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\frac{\left (\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}\right ) \int \frac{(d x)^{3/2}}{\left (1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}\right )^{3/2} \left (1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )^{3/2}} \, dx}{a \sqrt{a+b x^2+c x^4}}\\ &=\frac{2 (d x)^{5/2} \sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}} F_1\left (\frac{5}{4};\frac{3}{2},\frac{3}{2};\frac{9}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{5 a d \sqrt{a+b x^2+c x^4}}\\ \end{align*}

Mathematica [B]  time = 0.370293, size = 348, normalized size = 2.32 \[ \frac{d \sqrt{d x} \left (2 c x^2 \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{5}{4};\frac{1}{2},\frac{1}{2};\frac{9}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )+5 b \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{1}{4};\frac{1}{2},\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )-5 \left (b+2 c x^2\right )\right )}{5 \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d*x)^(3/2)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(d*Sqrt[d*x]*(-5*(b + 2*c*x^2) + 5*b*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b +
 Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[1/4, 1/2, 1/2, 5/4, (-2*c*x^2)/(b + Sqrt[b^2 -
 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])] + 2*c*x^2*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 -
 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[5/4, 1/2, 1/2, 9/4, (-2*c*x
^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])]))/(5*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]  time = 0.064, size = 0, normalized size = 0. \begin{align*} \int{ \left ( dx \right ) ^{{\frac{3}{2}}} \left ( c{x}^{4}+b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x)

[Out]

int((d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{\frac{3}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((d*x)^(3/2)/(c*x^4 + b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2} + a} \sqrt{d x} d x}{c^{2} x^{8} + 2 \, b c x^{6} +{\left (b^{2} + 2 \, a c\right )} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x)*d*x/(c^2*x^8 + 2*b*c*x^6 + (b^2 + 2*a*c)*x^4 + 2*a*b*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{\frac{3}{2}}}{\left (a + b x^{2} + c x^{4}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(3/2)/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Integral((d*x)**(3/2)/(a + b*x**2 + c*x**4)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{\frac{3}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((d*x)^(3/2)/(c*x^4 + b*x^2 + a)^(3/2), x)